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Note 

Numerical Instability Due to the Lorentz Force 
in a Relativistic Fluid, Laser-Plasma Code 

This note investigates a numerical instability due to including v x B in a one- 
dimensional, relativistic fluid (with fluid velocity v), Eulerian finite difference scheme 
based on the method of characteristics [l] and the advective differencing method due 
to Langdon and Dawson [2] for Maxwell’s curl equations. The effect of v x B is to 
preclude a solution solely via characteristics for the self-consistent EM fields in a cold, 
collisionless plasma. Longitudinal charge motion introduces a (charge) conservation 
law and thus the system of equations is nonhyperbolic. We derive the equations of 
first variation for the most natural generalization for treating v x B, known as 
“Lelevier’s remedy” [3], upwind (downwind) or full donor cell differencing [4], and 
show these imply a conditional stability which depends on the local electron fluid 
velocity and plasma density, but not on the dimensionless time step w dt. This 
instability, which is present for any donor cell differencing scheme, is distinctly 
different from the numerical Cherenkov instability which Godfrey [5] and Godfrey 
and Langdon [6] studied for the particle-code implementation of the Langdon-Dawson 
scheme, since error growth here is associated with electron orbit turning points 
rather than fast electron-EM wave resonance. 

Figure 1 shows the geometry we consider. A linearly polarized pulse is normally 
incident on a plasma filling the half-space z > 0 with an arbitrary initial charge density. 
Now if one simply ignores the v x B force on plasma electrons (we consider ions to be 
immobile over the time periods of interest) the Maxwell’s equations and the relativistic 
Lorentz force equation 

(d/dt)mv/(l - ~~/c~)l/~ = --e(E + v x B/c) (1) 

form a quasilinear hyperbolic system, readily integrable via the method of charac- 
teristics [7, 81. In this case only transverse motion is allowed, but the plasma electrons 
radiate according to Maxwell’s equations and have relativistic mass. 

On replacing v x B, we shall see that each equation may be written in normal, or 
characteristic form except one, the conservation law for charge. We shall difference 
this by replacing the space derivative by a forward or backward space difference, 
according to the sign of the local u, . The resulting explicit difference scheme is only 
conditionally stable. We shall derive stability criteria for the case of linearly polarized 
incident light, frozen ions, and full donor cell differencing; however, the structure of 
the system of equations is only slightly modified and our conclusions can be extended 
without essential modification for the case of arbitrary elliptic polarization, mobile 
ions, and any fractional donor cell differencing method. 
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FIG. 1. A planewave, linearly polarized along x, is normally incident on a plasma slab occupy- 
ing the half-space z > 0. Ions are assumed to be immobile and electrons move in x and z. 

Although retaining the v x B term rules out a numerical integration via charac- 
teristics alone, the method characteristics is ideally suitable for the case without 
v x B. Thus a number of interesting nonlinear optical effects may be studied, at least 
qualitatively, in particular nonlinear pulse reflection. IRRAD [S], a PI/l version of 
the algorithm, is currently being used to study intensity-dependent penetration and 
partial trapping of reflected pulses. A brief discussion of stability is included in the 
Appendix. 

For the geometry of Fig. 1, Maxwell’s equations and (1) can be written 

(a/at i c ajaz) E* = (+t2) nb; , 

(a/at i CV; a/aZ) E; = un;V; , 

(apt + CV: ap) 24; = +/d2)[~+(1 - v:) + ~~(1 + v:)], 

(a/at i- CO; ajaz) U: = --w[E; + (E+ - E-) ~;/dz], 

(a/at) d + (a/az) ~CV: = 0, 

with the following definitions of the dimensionless variables (in cgs-esu): 

E+ = (-elmcw)(E, i BJ 42, 

E: = (-e/mew) E, , 

11’ = u/c = v/Q - zqcyi2 = v’(l - u’2)1/2, 

n’ = 4rre2n/mw2, 

nh = 4rre2n,/mw2, 

(2) 

(3) 

where -e is the electron charge, n the electron number density, n,, = no(z) the ion 
number density, m the electron mass, and w the incident EM wave (angular) frequency. 
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The first five of Eqs. (2) are in normal, or characteristic form, 

(a/at + cp a/az)f = wg 

and may be differenced by replacing directional derivatives with differences along 
segments of the “characteristics.” We use a grid with dz = cdt, place all variables at 
grid points (nAt, jdz), and, following Courant et al. [I], replace each equation in 
normal form by 

f;" =,f$ + (w dt)g,". (4) 

Here Q denotes the intersection point where the segment with dzjdt = I$ drawn 
backwards from (jAz,(n + 1) At) crosses t = n At, and fan is obtained by linear 
interpolation: 

In the sixth of Eqs. (2) we use a backward (forward) space difference to replace 
a(n’~i)/az if vjn > 0 (< 0). Thus 

n;.n+1 = ni.” - J*y(v,): 2 0, (0, (6) 

where 

J+” = (n’v@y - (n’v& , 
(7) 

J-” = (n’vl)y+,, - (n’v:)? . 

This scheme avoids the use of differences over the double space interval 2dx. The 
latter would yield symmetric difference equations, but leads to unconditional instability 
in closely related Eulerian schemes for one-dimensional fluid dynamics [3]. Our 
scheme, like “Lelevier’s remedy” [3], includes flow only from the neighboring grid 
point on the left (right) if vFj 3 0 (< 0). 

In any actual computation the difference equations would include special-case 
tests to follow charge depletion regions, but the following discussion does not rely on 
their nature. 

Let F denote the exact solution of the finite difference equations (4)-(7), 

Fj” = (E+ , E- , E: , uh , ML , n’)j” , @a) 

and Pj’j” the solution of the differential equations evaluated at z = j At, t = IZ d t, 
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The error vector E = F - P evolves according to 

where CL& is the Jacobian of the evolution operator evaluated at t = n At: 

~(F~+%/Wc”), = (G&s + o(At). (10) 

Equation (9) may be derived from the “consistency condition” 

(11) 

where M, the evolution operator, is a shorthand for (4)-(7): 

F;+l = M(F;-, , F,“, F;+& = M(F,“). (12) 

One may verify (11) straightforwardly by inserting a Taylor series expansion about 
jAz for each appearance of 8’j*I in the operator M in (1 I), and then using (2) to cancel 
the components of the quotient and derivative terms in (11). 

From (1 l), one finds 

= ,& qk - ekn + o(c2) + o@ A02) 

as claimed. 
Performing the differentiation in (IO), we find 

where D and L denote the 3 x 3 matrices in the Appendix. The D’s are diagonal, 
with eigenvalues less than unity in magnitude. Hence only the L’s may cause error 
growth. Since the L’s are in general nondiagonalizable, one cannot directly apply the 
von Neumann criterion, even locally. 

To determine the stability criteria we define the norm of a matrix L as 

581/29/z-9 

(13) 
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and claim that instability is equivalent to 11 L$jI > 1. To see that the scheme is 
conditionally stable it suffices to consider Li . We find 

11 Li”, 1) = { 1 T u; + &z’(l - P)l’2(1 - 2u;2 + 0;” + z&%p)““}; (14) 

which can exceed unity. Figure 2 shows the regions of v-space corresponding to 
instability for several choices of the dimensionless electron density n’. 

Thus, local error growth is possible, but note that the powers of L (which one should 
expect to describe accumulated error growth) are 

L 

A” 0 0 
L”= 0 A” 0. 

i nW1 bnX”-1 A” 
(15) 

Hence L” -+ 0 as n -+ co. This does not imply stability, but only that the effect of 
errors is screened after a number of steps. Since (14) shows errors may grow initially, 
we expect the linearized analysis will break down and the exponential decay implied 
by (15) will not in fact dominate. 

This instability will also be present for any “fractional donor cell” differencing 
scheme which replaces (6)-(7) by an equation of the form 

“l 
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FIG. 2. Regions of instability in the VA - vi plane (from Eq. (14)). The curves are labeled by the 
dimensionless electron density n’ = 45m.eB/mwa, where n, is the instantaneous electron number 
density. Regions of instability lie inside each contour. These curve-s show that for any nonzero electron 
density error arnpliication will occur in the vicinity of the turning points of the electron orbits 
(u. = 0). 
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where the quantities d,, depend on local averages of vi values or on the signs of local 
vi values (see [4] for example). If (16) replaces (6x7) the only change in the relevant 
error growth matrices Ljk will be in the third row, and will involve 

an;*+l/au,;“, , an;“+ljau:; , an;n+l/an~n. 

Note that the first two of these are simply scaled by the coefficient d*, (we only need 
consider Ljk) from their previous values, suggesting that (16) amounts to a relabeling 
of the n’ contours in Fig. 2. The (3,3) element is not simply scaled because of the 
leading term in (16). Thus the new norm cannot be written by inspection of (14). Near 
vly N 0, however, where Figure 2 shows instability for any n’, the (3,3) element is 
effectively unity for either differencing scheme, and the “scaling rule” is valid. Hence 
the instability regions may move to different depths in the plasma, but will not be 
removed, by (16). 

For the case of arbitrary elliptic polarization, the system of equations is modified 
to include F* = -(e/mcw)(E, F Bz)/21/2 and U: as follows: 

(a/at f c a/az) F* = (~/dtZ) n’vi , 

(a/at -I- CV; a/h) U, = -(w/d!)[F+(l - ?I;) + F-(1 + Vi)]. 

Letting the new solution vector be 

F = (E+ , E- , F,. , F- , EL , u: , ul , ui , n’), 

and differencing each equation in normal form along characteristics as before, one 
will find the 4 x 4 submatrix in the new 9 x 9 error growth matrix ajr which now 
governs stability is 

where 

p = [n’v;v:(l - vy”]: , 

q = [n’v$:(l - v2)““]~, 

r = [n’(l - v’~)(I - vi2)]jn . 

, (17) 

The norm of L$ may be written 

(18) 

This exceeds unity, since it reduces to the previous form if we set s2 = 0. 
Finally we note that permitting ions to move adds to the solution vector three ion 

velocity components plus the ion density. The normal form equations are differenced 
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as before, and the conservation law for ions analogously to (6)-(7). The error growth 
matrices now contain an additional 4 x 4 matrix on the main diagonal identical in 
structure to (17)<18), but with ion density and velocity everywhere replacing the 
electron density and velocity. 

APPENDIX A: STABILITY OF THE DIFFERENCE SYSTEM WITH v x B = 0 

If one arbitrarily sets v x B = 0 in the basic system (2), and replaces the reduced 
system, 

(a/at I c alaz)E5 = (~/4/2) iv;, 
(A-1) 

(apt) 4 = -(42/2)(~+ + E-1, 

by the difference system as in (4), 

In+1 rn uxj = z&j - 

t (0 At/d2>(n’&)j” , 

(w At/v’Z)(E+ f E-): , 
(A-2) 

then the error growth matrices, defined analogously to iy in (lo), are 

The norms of these matrices do not exceed unity; the scheme (A-2) is stable in the 
sense of (13). The code IRRAD [7, 81 replaces the source current terms on the right- 
hand sides of (A-2) by their averages at the endpoints of the characteristic segments. 
This does not alter the 01’s above, as can be seen by direct (implicit) differentiation of 
the difference equations. 

APPENDIX B 

The submatrices in (16) are 
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0; = [ I &)- G = (2,. & &j. 

Dzj+l = i& 8 Ii. [ 8 %;.li. 

Gj+1 = 0, 
(:; if1 jj 

Here the first and second entries apply when US > 0 and z.$ < 0, respectively. We 
have defined 

Ujn = [n’(l - V”)l” Z&U;]7 , 

bin = [n’(l - y/2)1/2(1 - z$~)]; , 

A* = 1 i I?;:. 
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